This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Phosphorylation and Amine-induced Dephosphorylation of 4-Chlorocoumarin-3-carboxaldehyde and 4-Chloro-3-(β , β -dicyanoethenylidene)coumarin

Maha Darwish Khidrea

^a National Research Centre, Cairo, Egypt

Online publication date: 27 October 2010

To cite this Article Khidre, Maha Darwish(2003) 'Phosphorylation and Amine-induced Dephosphorylation of 4-Chlorocoumarin-3-carboxaldehyde and 4-Chloro-3- $(\beta,\beta$ -dicyanoethenylidene)coumarin', Phosphorus, Sulfur, and Silicon and the Related Elements, 178: 10, 2147 — 2158

To link to this Article: DOI: 10.1080/713744562 URL: http://dx.doi.org/10.1080/713744562

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Phosphorus, Sulfur, and Silicon, 178:2147-2158, 2003

Copyright © Taylor & Francis Inc.

ISSN: 1042-6507 print / 1563-5325 online

DOI: 10.1080/10426500390228602

PHOSPHORYLATION AND AMINE-INDUCED DEPHOSPHORYLATION OF 4-CHLOROCOUMARIN-3-CARBOXALDEHYDE AND 4-CHLORO-3- $(\beta, \beta$ -DICYANOETHENYLIDENE)COUMARIN

Maha Darwish Khidre National Research Centre, Dokki, Cairo, Egypt

(Received December 7, 2002; accepted April 24, 2003)

4-Chlorocoumarin-3-carboxaldehyde (1) and 4-chloro-3-(β,β-dicy-anoethenylidene)coumarin (2) produce their respective 1:1 phosphonate adducts (5a-c) and (6a-c) upon reaction with the appropriate dialkylphosphonates (3a-c). Compounds 5 undergo dechlorination and dephosphorylation upon reaction with certain primary aliphatic amines to yield 9 (or 10) according to the nature of the amine used. Compounds 1 and 2 undergo dechlorination through reaction with hexamethyl-phosphorustriamide 4 to give the respective 4-dimethylamino-derivatives (11a and 11b). Structural reasonings for the new compounds are based on compatible analytical and spectroscopic measurements. The mechanism for formation of compounds 11 also is discussed.

Keywords: Amine-induced dephosphorylation; coumarins; dialkylphosphonates; hexamethylphosphorustriamide; phosphonates; reaction mechanism

It is widely realized that the activity of certain natural products, drugs and pesticides owes much to presence of a coumarin nucleus in their molecules. Various widely used oral anticoagulants and rodenticides also incorporate the same nucleus. Therefore, it appeared of interest to study the reaction of 4-chloro coumarin-3-carboxaldehyde (1) and 4-chloro-3-(β , β -dicyanoethenylidene)coumarin (2) with dialkylphosphites (3a-c) and hexamethylphosphorustriamide (4). Compound 2 is now prepared for the first time by reacting 1 with malononitrile in ethanol. Phosphorylation of compounds 1 and 2 may endow interesting

Address correspondence to Maha Darwish Khidre, Department of Pesticide Chemistry, National Research Centre, Dokki, Cairo, Egypt. E-mail: mdkhedr@yahoo.com

2148 M. D. Khidre

biocidal potentialities to the new products. The present study runs thus in the line with our growing interest that searchs for new organophosphorus compounds derived from heterocycles^{4–6} for evaluating their biological activities.

RESULTS AND DISCUSSION

It has been now found that 4-chlorocoumarin-3-carboxaldehyde (1)* reacts with dialkyl phosphites (3a-c) at 100°C in absence of solvent to give colorless phosphonate 1:1 adducts for which structures 5a-c are respectively assigned.

Structural reasoning for **5** are: Compatible elementary and molecular weight determinations (MS) were gained for **5a-c**. Positive chemical shifts were recorded for **5a** ($\delta = 20.80$ ppm) [31 P-NMR spectrum (vs 85% 4 H₃PO₄], confirming the presence of phosphorus-to-carbon linkage (phosphonate group).

The IR spectrum (KBr, cm⁻¹) of 4-chloro-3-[(α -dimethoxy-phosphoryl- α -hydroxy)methyl]coumarin (**5a**), taken as a representative example, showed absorption bands at 3250 (OH), 1685 (C=O, lactone), 1520 (C=C, aromatic), 1220 (P=O)⁸, 1050 (P-O-CH₃)⁸ and at 860 (-C-Cl). The latter band appeared in the IR spectrum of **1** at 780.

The ¹H NMR spectrum of **5a** (CDCl₃, δ ppm) showed protons of the OCH₃ groups attached to phosphorus as two doublets (each with ³J_{HP} = 12 Hz) at 3.95 and 3.75. Apparently, the asymmetry of the molecule

^{*}Also known as 4-chloro-3-formylcoumarin and 4-chloro-2-oxo-2H-chromene-3-carbaldehyde.

due to the presence of a stereo-center would render the two methoxyl groups diastereotropic and hence anisochronous; resulting thus in the observed splitting pattern. The spectrum revealed the P- \underline{CH} proton as a doublet (${}^2J_{HP}=22~Hz$) at 5.50. The spectrum also showed a multiplet in the region 8.00–7.40 (4H, aromatics) and a broad singlet at 4.25 (OH, exchangeable with D_2O).

The mass spectrum of $\bf 5a$ showed the molecular ion peak at m/z 318 (320) which corresponded to $C_{12}H_{12}ClO_6P$. Loss of $P(O)(OCH_3)_2$ radical from M^+ afforded the base peak (cation $\bf a$) at m/z 209 (211). Meanwhile, loss of $H(O)P(OCH_3)_2$ molecule from M^+ afforded cation $\bf b$ at m/z 208 (210) which corresponded to the molecular ion peak of compound $\bf 1$ itself [MS: m/z 208 (210), $C_{10}H_5ClO_3$]. This behavior of $\bf 5a$ under electron impact recalls its thermolysis upon heating under reduced pressure which yields compound $\bf 1$ and dimethyl phosphite $\bf 3a$ (see Experimental).

The 13 C-NMR of **5a** showed signals at 53.69 ($\underline{\mathbf{C}}$ -OH), 67.24 (O $\underline{\mathbf{C}}$ H₃), 68.54 (O $\underline{\mathbf{C}}$ H₃), 116.88, 118.16, 120.97, 125.43, 126.28, 133.47, 151.70, 159.96, coumarin ring carbon atoms and at 211.40 ($\underline{\mathbf{C}}$ =O).

CI
$$\oplus$$
 OH CHO

a $m/z = 209 (211)$
 $m/z = 208 (210)$

In the same sense, 4-chloro-3- $(\beta,\beta$ -dicyanoethenylidene)coumarin (2) reacted with dialkylphosphonates (3a-c) to give colorless phosphonate 1:1 adducts for which structure 6a-c were assigned respectively.

Compatible elementary and molecular weight determinations (MS) were gained for all adducts. They showed positive chemical shifts in the region 15–20 ppm (vs. $\rm H_3PO_4$) in their ^{31}P NMR spectra; indicating that they are phosphonate in nature.⁷

The IR spectrum (KBr, cm⁻¹) of **6a** taken as example, revealed the presence of absorption bands at 2220 (CN), 1260 (P=O, free), 1050 (P=O-CH₃) and 765 (C-Cl). The latter band appeared in the spectrum of **2** at 760 cm⁻¹.

The 1H NMR spectrum of **6a** (CDCl₃, δ ppm) showed protons of the two methoxyl groups attached to phosphorus (6H) as two doublets (each with $^3J_{HP}=12$ Hz) at 3.95 and 3.80. The exocyclic methine protons (2H) appeared in doublet patterns. That of the C**H**—P group appeared at 4.50 (2d, $^2J_{HP}=18$ Hz) while that of the P—C—CH grouping appeared at 5.2 (2d, $^3J_{HP}=12$ Hz). The multiplet (4H) due to the aromatic protons appeared in the region 8.00–7.35 ppm. Presence of an AB-system due to protons of the P—CH—CH—grouping and lack of a signal due to protons of a methylene group (—CH₂—C—P) rules out an alternative structure like **7**.

The mass spectrum of ${\bf 6a}$ showed the molecular ion peak at m/z 366 (368); corresponding to $C_{15}H_{12}ClN_2O_5P$. Loss of $CH(CN)_2$ radical from M^+ yields cation $\underline{\bf c}$ at m/z 301 (303). Meanwhile, loss of Cl radical from M^+ affords cation $\underline{\bf d}$ at m/z 331 (base peak). The molecular ion peak of ${\bf 6a}$ can also eject a neutral HCl molecule to give a radical cation of type $\underline{\bf e}$ (m/z 330). Cation $\underline{\bf g}$ at m/z 257 is most probably formed via expulsion of $P(O)(OCH_3)_2$ radical from M^+ . The same process also can afford cations $\underline{\bf h}$, m/z 109 and $\underline{\bf i}$, m/z 110 respectively.

Compounds **6** regenerate the appropriate starting materials ($\mathbf{2} + \mathbf{3}$) upon thermolysis under reduced pressure. ¹³C NMR spectrum of **6a** showed signals at 39.98 ($-\underline{\mathbf{C}}\mathbf{H}$), 42.30 ($-\underline{\mathbf{C}}\mathbf{H}$), 53.68 ($0\underline{\mathbf{C}}\mathbf{H}_3$), 55.11 ($0\underline{\mathbf{C}}\mathbf{H}_3$), 110.76, 111.29, 117.70 (125.65), 126.81, 134.20, 152.11, 158.85 coumarin ring carbon atoms, 117.07, 117.94 ($\underline{\mathbf{C}}\mathbf{N}$)₂ and 201 ($\underline{\mathbf{C}}\mathbf{=}\mathbf{O}$).

In an attempt to obtain new structures incorporating both P and N moieties as in the case of a variety of broadly used biocides, ^{10–12} we have investigated the reaction of certain amines with compounds 5. The beseeched products 8, however, could not be formed. Instead, compounds 5 underwent amine-induced dephosphorylation yielding aminated products of type 9.

$$\begin{array}{c} & & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

2152 M. D. Khidre

The Schiff base 10 was formed only when ethylamine was used in the transamination reaction. Compatible elementary and spectroscopic data were obtained for compounds **9a-c** and **10**. Elementary analyses and molecular weight determination (MS) of 9c, taken as a representative example, corresponded to C₁₃H₁₃NO₄. Its IR spectrum (KBr, cm⁻¹) showed bands at 3400 (NH), 1680 (C=O), 1610, 1550 (C=C) and 1260 (C–O, stretching). The ¹H NMR of **9c** (CDCl₃, δ ppm) showed signals at 12.15 (NH, s), 8.05–7.30 (4H, aromatics, m), 10.20 (C=CH, s), 4.10 $(C\underline{H}_2, d, J_{HH} = 9 Hz), 3.80 (CH_2, d, J_{HH} = 9 Hz), 3.50 (3H, OC\underline{H}_3, s),$ and 3.35 (2H, CH_2 , d, $J_{HH} = 9$ Hz). Its ¹³CNMR spectrum showed signals due to the C=O groups at 211.82 (C=O, pyrone) and at 191.84 ppm (C-O, aldehyde). The coumarin-ring carbon atoms appeared as a cascade of signals at 106.76, 114.12, 118.89, 123.63, 127.37, 134.45, 155.46, and 159.73 ppm. The spectrum also showed signals at 70.40 (CH₂), 59.40 (OCH₃), 47.52 (CH₂). This conclusion is also confirmed by Distortion less Enhancement by Polarization Transfer (DEPT) measurement

The behavior of compounds **1** and **2** toward hexamethylphosphorustriamide **4** also was investigated. The reactions proceeded in tetrahydrofuran at ambient temperature to give products devoid of phosphorus (**11a** and **11b** respectively).

Compounds **11a** and **11b** were unequivocally prepared and identified (m.p., mixed m.p. and comparative IR and MS spectra) upon reacting **1** and **2**, respectively with dimethylamine in tetrahydrofuran.

The reaction mechanism is depicted in Scheme 1. Initial nucleophilic attack by the phosphine-phosphorus atom on 1 (or 2) would produce a betaine of structure like 12.^{13b} By virtue of the great affinity of phosphonium ions to halides, ^{13a} would facilitate formation of a transient betaine of type 13. The latter in which phosphorus can act as a good leaving group due to its bulkiness ^{13a} decomposes then to afford 11.

Analytic and spectroscopic data recorded for compound **11** afford strong support for the postulated mechanism.

$$(CH_{3})_{2}N \qquad (CH_{3})_{3}N \overset{\textcircled{\scriptsize 0}}{\nearrow} R$$

$$CI : PR_{2} \qquad (CH_{3})_{3}N \overset{\textcircled{\scriptsize 0}}{\nearrow} R$$

$$R = N(CH_{3})_{2} \qquad I2$$

$$X = 0 \text{ or } X = C(CN)_{2}$$

$$(CH_{3})_{2}N \overset{CI}{\nearrow} R$$

$$(CH_{3})_{3}N \overset{CI}{\nearrow} R$$

$$(CH_{3}$$

SCHEME 1

CONCLUSION

Apparently, 4-chloro-3-coumarincarboxaldehyde (1) and 4-chloro- $(\beta, \beta$ -dicyanoethenylidene)coumarin (2) undergo preferential attack by dialkylphosphonates (3a-c) at position-3 to give phosphonate 1:1 adducts of types 5 and 6 respectively. Adducts 5 undergo amine-induced dephosphorylation and dechlorination upon reaction with aliphatic primary amines. In terms of the Hard-Soft-Acid-Base (HSAB) principle, ^{14,15} the reacting amines may be considered as softer (stronger) bases, than dialkyl phosphonates (3).

Hexamethylphosphorustriamide **4** induces chlorine displacement in **1** and **2** to yield the respective 4-(dimethylamino)- derivatives **11**. To the best of our knowledge, this represents a new era for utilising **4** as an aminating agent.

EXPERIMENTAL

All melting points are uncorrected. The IR spectra were recorded in KBr using UNICAM SP 1100 or PU 7912 Infracords. The $^1\mathrm{H}$ NMR spectra were recorded on Jeol GLMEX 270 MHz Spectrometer (Super conducting magnet) in CDCl $_3$ using TMS as an internal standard, $^{31}\mathrm{P}$ -NMR spectra were recorded with Jeol GLMEX 270 MHz Spectrometer in CDCl $_3$ (vs. 85% $\mathrm{H}_3\mathrm{PO}_4$). The mass spectra were obtained with Finnigan MAT-SSQ 7000 Spectrometer at 70 eV.

2154 M. D. Khidre

4-Chloro-2-oxo-2H-chromene-3-carboxaldehyde was prepared by a known procedure.¹⁷ The phosphorus reagents and amines were available from Aldrich Co. The phosphites were freshly distilled before use.

Physical and spectral data of the new compounds are compiled in Tables I and II.

Preparation of 4-Chloro-3-(β , β -dicyanoethenylidene)-coumarin (2)

A mixture of 1 (2.08 g, 0.01 mmol) and malononitrile (0.66 g, 0.01 mmol) in 50 ml absolute ethanol was stirred at room temperature for 4 h. The solid formed was collected then recrystallized from cyclohexane to give 2 as yellow crystals, yield 79%. Physical and analytical data of compound 2 are presented in Table I. The 1H NMR spectrum showed a multiplet due to the aromatic protons in the δ 8.00–7.30 region wherein emerged a singlet (1H) at δ 7.80 due to the exocyclic ethylenic proton.

Reaction of 4-Chlorocoumarin-3-carboxaldehyde (1) and 4-chloro-3-(β , β -dicyanoethenylidene)coumarin (2) with Dialkyl Phosphites (3a-c)

General Procedure

A mixture of 1 (0.01 mmol) and dialkyl phosphite (dimethyl-, diethyl-, and diisopropyl phosphites, 5 ml) was heated in the absence of solvent at 100°C for 2–4 h. After removing the volatile materials in vacuo, the residue was triturated with light petroleum and left to cool. The solid so formed was collected and recrystallized from a suitable solvent to give compounds **5a–c**.

Similarly compounds **6a–c** were isolated upon reacting **2** with **3a–c** (yield 80%). Physical, analytical and spectral data for compounds **5a–c** and **6a–c** are presented in Tables I and II.

Action of Heat on Phosphonate 5a

Compound **5a** (0.05 g) was heated in a cold finger sublimator at 230°C (bath temperature) under reduced pressure (5 mm/Hg) for 30 min. The compound that sublimed was collected (85%), recrystallized from ethyl alcohol to give yellow crystals, proved to be 4-chlorocoumarin-3-carboxaldehyde (1) (m.p., mixed m.ps. 123°C, and comparative IR spectra). Dimethyl phosphite was detected in receiver by the development of a violet color on addition of 3,5-dinitrobenzoic acid in the presence of alkali. ¹⁶

TABLE I Physical, Analytical, IR, and MS Spectral Data of Compounds 2, 5a-c, 6a-c, 9a-c, 10, and 11a,b

2 79 198—20 Glashedwam, without and control of the						Anal.	Anal. (Calcd./Found)	Found)				${\rm IR}~{\rm cm}^{-1}$	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Comp.	$\mathrm{Yield}^{a}\left(\%\right)$	m.p. (°C)	Mol. form (m. wt.)	C	Н	Cl	N	Ь	M + M/z %	0=0	C=C	CN
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	87	42	198–200	$ m C_{13}H_5CIN_2O_2 \ (256.64)$	60.83	1.96 2.10	13.81	10.91 11.15		256 (100)	1750	1600	2210
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											P=0	P-0-C	Ю
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ба	80	151 - 153	${ m C_{12}H_{12}ClO_6P}$	45.23	3.79	11.12	I	9.72	318	1220	1050	3250
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 b	75	106–108	$^{(318.64)}_{(14H_{16}ClO_6P)}$	45.00 48.50	4.00	10.94 10.22	I	10.01 8.93	(8.40) 346	1200	1050	3300
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				(346.70)	48.82	4.94	10.58		8.64	(100)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 c	85	95–98	$\mathrm{C_{16}H_{20}ClO_6P}$	51.28	5.37	9.46	I	8.26	374	1220	1000	3440
$\begin{array}{llllllllllllllllllllllllllllllllllll$				(314.13)	90.30	4.97	9.05		60.7	(100)	P=0	P-0-C	CN
$\begin{array}{llllllllllllllllllllllllllllllllllll$	6a	09	160 - 162	$\mathrm{C_{15}H_{12}CIN_{2}O_{5}P}$	49.13	3.29	99.66	7.63	8.44	366	1260	1050	2220
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				(366.69)	49.45	3.50	9.83	7.92	8.50	(10.35)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	q 9	65	125 - 127	$\mathrm{C_{17}H_{16}CIN_{2}O_{5}P}$	51.72	4.08	8.98	7.09	7.84	394	1253	1049	2260
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				(394.72)	52.00	4.34	9.11	6.85	7.50	(16.99)			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	96	70	105 - 107	$\mathrm{C_{19}H_{20}CIN_{2}O_{5}P}$	53.97	4.76	8.38	6.62	7.32	422	1263	1096	2200
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				(422.80)	54.24	5.01	8.55	6.93	7.54	(30.15)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											HC=0	HN	C
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9a	70	185 - 187	$\mathrm{C}_{13}\mathrm{H}_{13}\mathrm{NO}_3$	67.52	5.66	I	90.9	I	231	1700	3400	1600
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				231.25	67.88	5.95		5.86		(50.18)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	96	09	158-160	$\mathrm{C}_{14}\mathrm{H}_{15}\mathrm{NO}_3$	68.55	6.16	I	5.71		245	1705	3420	1605
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				245.27	68.90	6.45		5.95		(66.55)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9c	65	125 - 127	$\mathrm{C}_{13}\mathrm{H}_{13}\mathrm{NO}_4$	63.15	5.29	I	5.66	I	247	1710	3400	1605
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				247.24	63.50	4.95		00.9		(30.45)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10	75	102 - 104	$ m C_{14}H_{16}N_{2}O_{2}$	68.83	09.9	I	11.46	l	244	0=0	HN	CHI
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				244.29	69.02	6.35		11.85		(30.68)	1700	3400	1640
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11a	75	130 - 132	$\mathrm{C}_{12}\mathrm{H}_{11}\mathrm{NO}_3$	66.35	5.10	I	6.44	I	217	HC=0	$-N-(CH_3)_3$	C
80 $75-77$ $C_{15}H_{11}N_3O_2$ 67.91 4.17 — 15.84 — 265 $C=0$. 265.27 68.23 4.45 16.03 (100) 1704				217.22	00.99	4.95		6.21		(100)	1702	2942	1567
$68.23 4.45 \qquad 16.03 \qquad (100) \qquad 1704$	11b	80	75–77	$ m C_{15}H_{11}N_{3}O_{2}$	67.91	4.17	I	15.84	I	265	0	$-N-(CH_3)_3$	CN
				265.27	68.23	4.45		16.03		(100)	1704	2930	2209

Solvents of crystallization: $\bf 5b,c, 10$ cyclohexane, $\bf 6b,c$ pet. ether $60-80^{\circ}$ C, $\bf 11a,b$ acetone-pet. ether $40-60^{\circ}$ C. "approximated."

9
<u> </u>
1
ק
an
0
_
ď
6
ပွဲ
36
٠,
ó
20
5
Ĕ
2
du
00
\mathcal{O}
of
ta
)a
П
ra
ç
be
α
IR.
IMR
NMR
IMR
13 C NMR
IMR
$^{13}_{13}$ and 13 C NMR
$ m 4R,~and~^{13}C~NMR$
V V V V V V V V V V
V V V V V V V V V V
MR , and ^{13}C NMR
$,^1\mathrm{H}$ NMR, and $^{13}\mathrm{C}$ NMR
$I\!R$, ${}^1\!H$ NMR, and ${}^{13}\!$ C NMR
$ m 4R,~^1H~NMR,~and~^{13}C~NMR$
MR , ^{1}H NMR , and ^{13}C NMR
$^{31}\mathrm{P}\mathrm{NMR},^{1}\mathrm{H}\mathrm{NMR},\mathrm{and}^{13}\mathrm{C}\mathrm{NMR}$
$^{ m NMR}$, $^{ m 1H}$ NMR, and $^{ m 13}$ C NMR
$^{31}\mathrm{P}\mathrm{NMR},^{1}\mathrm{H}\mathrm{NMR},\mathrm{and}^{13}\mathrm{C}\mathrm{NMR}$
LE II 31 P NMR, 1 H NMR, 30 d 13 C NMR
LE II 31 P NMR, 1 H NMR, 30 d 13 C NMR

ō	21 22 22 62		500
Comp.	Comp. "PNMR	$^{ au} ext{H} ext{NMR}^a$	LOC NMR
ба	20.80	3.75, 3.95 [2* d, 6H, P $-(O-C-CH_3)_2$], 4.25 [brs, 1H, OH], 5.50 [d 1H 2 L $-$ 99 H7 2 D $-C$ HI 7 A0, 8 00 [m AH aromatical	
2 b	19.20	19.20 1.25 [d of t, 6H, P-(O-C-CH ₃)], 1.35-0.00 [m], 11, aromatical. P-(O-C _T , 6H, P-(O-C-CH ₃)], 4.15 [d of quint, 5H, P-CH], 7.4 0.05 [m. 4.15], 2.30 [m. 4.15], $\frac{1}{2}$ [m. 4.16] $\frac{1}{2}$ [m. 4.17], $\frac{1}{2}$ [m. 4.18]	
2 c	18.00	7.4—6.09 [m, 4tt, aromatucs]. 1.25 [m, 12H, P—(O—C—CH ₃)], 4.4 [bs, OH], 4.75 [d of sept., 2H, D. (O—CH—C)], 7.4 g for [m, 4tt, aromatics].	
9 9	18.00	1.4 [d of t, 6H, P—(O—C—CH ₃) ₂], 4.25 [d of quint, 4H, P—(O—C—C ₂) ₂], 4.25 [d of quint, 4H, P—(O—C) ₂ (C—C) ₂], 4.5 [d of quint, 4H, P—(O—1) ₂ (C—1) ₂ (C—	
		$[2a, 1H, 3HP = 19.8 HZ, CH(CN)_2], i.35-5.05 [m, 4H, aromatics]$	
99	14.79	1.4 [m, 12H, P–(O–C–CH ₃) ₂], 4.4 [2d, 1H, $^2J_{HP} = 19$ Hz, P–C <u>H</u>], 4.85 [d of sept. 2H, P–(O–C <u>H</u> –C) ₂], 5.2 [2d, 1H,	
9a		$^3J_{HP}=19$ Hz, $C\underline{H}(CN)_2$], 7.35–8.00 [m, 4H, aromatics]. 1.1 [t, 3H, (—C—C \underline{H}_3)], 1.95 [q, 2H, —C \underline{H}_2 —C], 3.95 [t, 2H,	
		N—CH ₂ —C], 7.1–8.05 [m, 4H, aromatics], 10.1 [s, 1H, CHO], 12.05 [s, 1H, NH].	118.85, 123.64, 127.64, 134.46, 155.50, 159.55 coumarin ring carbon atoms, 191.87 (CHO), 211.82 (C=O).
96		1.0 [t, 3H, $(-C-C\overline{H}_3)$], 1.9, 4.2 [m, 6H, $-(C\overline{H}_2)_3-C$], 7.1–8.0 [m, 4H aromatics] 10.1 [s, 1H, CHO], 12.05 [s, 1H, NH].	
10		1.1 (t, 3H, C–CH ₃), 1.5 [t, 3H, (–C–CH ₃)], 3.5 (q, 2H, CH ₂), 4.0 [q, 2H, $-(CH_2-C)$], 7.1–8.05 [m, 4H, aromatics], 8.65 [s, 1H,	
		$C\underline{H}$ =N].	(coumarin ring carbon atoms), 160.73 (<u>C</u> H=N), 201.20 (C=O).
11a		3.5 [2s, 6H, (—N—CH ₃) ₂], 7.20–8.10 [m, 4H, aromatics], 8.50 [s, 1H, CHO].	15.35 (CH ₃), 20.24 (CH ₃), 95.01, 115.34, 121.55, 124.22, 126.57, 134.32, 155.30, 163.11 (coumarin ring carbon etc., 100.98 (CHO) and 20.000
11b		3.6 [2s, 6H, (-N-CH ₃) ₂], 7.20-7.80 [m, 4H, aromatics], 8.20 [s, 1H, \overrightarrow{CH} =C(CN) ₂].	atoms), 130.20 (<u>U110</u>), 201.20 (<u>U</u> 0).

 $[^]a\mathrm{NMR}$ measurements run in CDCl3.

Reaction of Phosphonate 5a with Amines

General Procedure

A solution of the amine (propylamine, butylamine methoxy-ethyl amine) (2 mmol) in absolute methanol (20 ml) was added dropwise at 0–5°C to a stirred mixture of **5a** (1 mmol) in the same solvent over a period of 30 min. Upon cooling for 2 h, the crystalline product which separated was collected by filtration, washed successively with methanol, and water then recrystallized from a suitable solvent to give compounds **9a–c**. After concentrating the filtrates under reduced pressure additional products were obtained; for more details see Tables I and II.

Reaction of Phosphonate 5a with Ethylamine

A solution of ethylamine (2 mmol) in absolute ethanol (20 ml) was added dropwise at $0-5^{\circ}\mathrm{C}$ to a stirred mixture of 5a (1 mmol) in the same solvent (5 ml) over a period of 10 min. On cooling, the crystalline product which separated was collected by filtration, washed successively with ethanol and water, then recrystallized from cyclohexane. (Tables I and II).

Reaction of 1 and 2 with Hexamethylphosphorustriamide (HMPT) (4)

General Procedure

A mixture of 1 (2.08 g, 0.01 mmol) and HMPT (0.01 mmol) in dry tetrahydrofuran (50 ml) was kept at room temperature for 2 h and the solid formed was collected, then recrystallized from petroleum ether (40–60°C)/ether to give 11a (yield: 75%). Similarly 11b was isolated upon reacting 2 with 4 (yield 85%). Physical, analytical and spectral data of compounds 11a,b are presented in Tables I and II.

Reaction of 1 and 2 with Dimethylamine

General Procedure

A mixture of 1 (0.01 mmol) and dimethylamine (0.01 mmol) in dry tetrahydrofuran (50 ml) was refluxed for 4–6 h and the solid formed was collected and proved to be 11a (m.p., mixed m.p. and comparative IR and MS spectra). Similarly 11b was isolated upon reacting 2 (0.01 mmol) and diethylamine (0.01 mmol) in dry tetrahydrofuran (50 ml).

REFERENCES

- [1] G. Feuer, Prog. Med. Chem., 10, 85 (1973).
- [2] A. O. Obaseki, W. R. Porter, and W. T. Trager, J. Heterocyclic Chem., 19, 385 (1982).
- [3] M. A. Hermodson, W. M. Barker, and K. P. Link, J. Med. Chem., 14, 167 (1971).
- [4] M. R. H. Mahran, M. D. Khidre, and H. Abou-Yosef, Phosphorus, Sulfur, and Silicon, 101, 17 (1995).
- [5] M. D. Khidre, H. M. Abou-Yosef, and M. R. H. Mahran, Phosphorus, Sulfur, and Silicon, 140, 147 (1998).
- [6] M. D. Khidre, H. M. Abou-Yosef, and M. R. H. Mahran, Phosphorus, Sulfur, and Silicon, 177, 647 (2002).
- [7] M. M. Crutchfield, O. H. Dungan, J. H. Letcher, et al., Topics in Phosphorus Chemistry (Interscience Publishers, New York, 1967), vol. 5, pp. 227–447.
- [8] L. J. Bellamy, The Infra-Red Spectra of Complex Molecules (John Wiley and Sons, Inc., New York, 1958), p. 311.
- [9] E. L. Eliel and S. H. Wilens, Stereochemistry of Organic Compounds (John Wiley and Sons, Inc., New York, 1994), pp. 486–499.
- [10] B. L. Holman, A. G. Jones, M. A. Davis, J. Askenazi, and P. R. Maroko, J. Nucl. Med., 17, 508 (1976).
- [11] O. P. D. Noronha and K. S. Venkateswarlu, Eur. J. Nucl. Med., 6, 121 (1980).
- [12] B. G. Clubley and J. Rideout, Eur. Pat. Appl. Ep 544, 345 (1991); C.A., 119, 167433 (1993).
- [13] (a) R. F. Hudson, Structure and Mechanism in Organophosphorus Chemistry (Academic Press, London, 1965), pp. 204–249; (b) A. Arutgunam, V. I. Gunar, and S. I. Zav'yalov, Izv. Akad. Nauk, SSSR. Serkhim, 12, 2857 (1969); C.A., 72, 78979 (1970).
- [14] R. G. Pearson, Science, 151, 172 (1966).
- [15] B. Saville, Angew. Chem. Intern. Ed. Engl., 6, 928 (1967).
- [16] B. C. Saunders and B. P. Stark, Tetrahedron, 4, 187 (1958).
- [17] D. Heber, I. C. Ivanov, and S. K. Karagiosov, J. Heterocyclic Chem., 32, 505 (1995).